使用聊天/嵌入响应用法

概览

Spring AI 通过在 Usage 接口中引入 getNativeUsage() 方法并提供 DefaultUsage 实现,增强了模型用量处理功能。此更改简化了不同 AI 模型跟踪和报告其用量指标的方式,同时保持了框架的一致性。

主要更改

Usage 接口增强

Usage 接口现在包含一个新方法

Object getNativeUsage();

此方法允许访问特定于模型的原生用量数据,从而在需要时实现更详细的用量跟踪。

与 ChatModel 一起使用

以下是使用 OpenAI ChatModel 跟踪用量的完整示例

@SpringBootConfiguration
public class Configuration {

        @Bean
        public OpenAiApi chatCompletionApi() {
            return OpenAiApi.builder()
                .apiKey(System.getenv("OPENAI_API_KEY"))
                .build();
        }

        @Bean
        public OpenAiChatModel openAiClient(OpenAiApi openAiApi) {
            return OpenAiChatModel.builder()
                .openAiApi(openAiApi)
                .build();
        }

    }

@Service
public class ChatService {

    private final OpenAiChatModel chatModel;

    public ChatService(OpenAiChatModel chatModel) {
        this.chatModel = chatModel;
    }

    public void demonstrateUsage() {
        // Create a chat prompt
        Prompt prompt = new Prompt("What is the weather like today?");

        // Get the chat response
        ChatResponse response = this.chatModel.call(prompt);

        // Access the usage information
        Usage usage = response.getMetadata().getUsage();

        // Get standard usage metrics
        System.out.println("Prompt Tokens: " + usage.getPromptTokens());
        System.out.println("Completion Tokens: " + usage.getCompletionTokens());
        System.out.println("Total Tokens: " + usage.getTotalTokens());

        // Access native OpenAI usage data with detailed token information
        if (usage.getNativeUsage() instanceof org.springframework.ai.openai.api.OpenAiApi.Usage) {
            org.springframework.ai.openai.api.OpenAiApi.Usage nativeUsage =
                (org.springframework.ai.openai.api.OpenAiApi.Usage) usage.getNativeUsage();

            // Detailed prompt token information
            System.out.println("Prompt Tokens Details:");
            System.out.println("- Audio Tokens: " + nativeUsage.promptTokensDetails().audioTokens());
            System.out.println("- Cached Tokens: " + nativeUsage.promptTokensDetails().cachedTokens());

            // Detailed completion token information
            System.out.println("Completion Tokens Details:");
            System.out.println("- Reasoning Tokens: " + nativeUsage.completionTokenDetails().reasoningTokens());
            System.out.println("- Accepted Prediction Tokens: " + nativeUsage.completionTokenDetails().acceptedPredictionTokens());
            System.out.println("- Audio Tokens: " + nativeUsage.completionTokenDetails().audioTokens());
            System.out.println("- Rejected Prediction Tokens: " + nativeUsage.completionTokenDetails().rejectedPredictionTokens());
        }
    }
}

与 ChatClient 一起使用

如果您使用的是 ChatClient,您可以通过 ChatResponse 对象访问用量信息

// Create a chat prompt
Prompt prompt = new Prompt("What is the weather like today?");

// Create a chat client
ChatClient chatClient = ChatClient.create(chatModel);

// Get the chat response
ChatResponse response = chatClient.prompt(prompt)
        .call()
        .chatResponse();

// Access the usage information
Usage usage = response.getMetadata().getUsage();

优势

标准化:提供一致的方式来处理不同 AI 模型的用量 灵活性:通过原生用量特性支持特定于模型的用量数据 简化:通过默认实现减少样板代码 可扩展性:易于针对特定模型需求进行扩展,同时保持兼容性

类型安全注意事项

处理原生用量数据时,请仔细考虑类型转换

// Safe way to access native usage
if (usage.getNativeUsage() instanceof org.springframework.ai.openai.api.OpenAiApi.Usage) {
    org.springframework.ai.openai.api.OpenAiApi.Usage nativeUsage =
        (org.springframework.ai.openai.api.OpenAiApi.Usage) usage.getNativeUsage();
    // Work with native usage data
}