使用聊天/嵌入响应用法
概览
Spring AI 通过在 Usage 接口中引入 getNativeUsage()
方法并提供 DefaultUsage
实现,增强了模型用量处理功能。此更改简化了不同 AI 模型跟踪和报告其用量指标的方式,同时保持了框架的一致性。
主要更改
与 ChatModel 一起使用
以下是使用 OpenAI ChatModel 跟踪用量的完整示例
@SpringBootConfiguration
public class Configuration {
@Bean
public OpenAiApi chatCompletionApi() {
return OpenAiApi.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.build();
}
@Bean
public OpenAiChatModel openAiClient(OpenAiApi openAiApi) {
return OpenAiChatModel.builder()
.openAiApi(openAiApi)
.build();
}
}
@Service
public class ChatService {
private final OpenAiChatModel chatModel;
public ChatService(OpenAiChatModel chatModel) {
this.chatModel = chatModel;
}
public void demonstrateUsage() {
// Create a chat prompt
Prompt prompt = new Prompt("What is the weather like today?");
// Get the chat response
ChatResponse response = this.chatModel.call(prompt);
// Access the usage information
Usage usage = response.getMetadata().getUsage();
// Get standard usage metrics
System.out.println("Prompt Tokens: " + usage.getPromptTokens());
System.out.println("Completion Tokens: " + usage.getCompletionTokens());
System.out.println("Total Tokens: " + usage.getTotalTokens());
// Access native OpenAI usage data with detailed token information
if (usage.getNativeUsage() instanceof org.springframework.ai.openai.api.OpenAiApi.Usage) {
org.springframework.ai.openai.api.OpenAiApi.Usage nativeUsage =
(org.springframework.ai.openai.api.OpenAiApi.Usage) usage.getNativeUsage();
// Detailed prompt token information
System.out.println("Prompt Tokens Details:");
System.out.println("- Audio Tokens: " + nativeUsage.promptTokensDetails().audioTokens());
System.out.println("- Cached Tokens: " + nativeUsage.promptTokensDetails().cachedTokens());
// Detailed completion token information
System.out.println("Completion Tokens Details:");
System.out.println("- Reasoning Tokens: " + nativeUsage.completionTokenDetails().reasoningTokens());
System.out.println("- Accepted Prediction Tokens: " + nativeUsage.completionTokenDetails().acceptedPredictionTokens());
System.out.println("- Audio Tokens: " + nativeUsage.completionTokenDetails().audioTokens());
System.out.println("- Rejected Prediction Tokens: " + nativeUsage.completionTokenDetails().rejectedPredictionTokens());
}
}
}
与 ChatClient 一起使用
如果您使用的是 ChatClient
,您可以通过 ChatResponse
对象访问用量信息
// Create a chat prompt
Prompt prompt = new Prompt("What is the weather like today?");
// Create a chat client
ChatClient chatClient = ChatClient.create(chatModel);
// Get the chat response
ChatResponse response = chatClient.prompt(prompt)
.call()
.chatResponse();
// Access the usage information
Usage usage = response.getMetadata().getUsage();
优势
标准化:提供一致的方式来处理不同 AI 模型的用量 灵活性:通过原生用量特性支持特定于模型的用量数据 简化:通过默认实现减少样板代码 可扩展性:易于针对特定模型需求进行扩展,同时保持兼容性
类型安全注意事项
处理原生用量数据时,请仔细考虑类型转换
// Safe way to access native usage
if (usage.getNativeUsage() instanceof org.springframework.ai.openai.api.OpenAiApi.Usage) {
org.springframework.ai.openai.api.OpenAiApi.Usage nativeUsage =
(org.springframework.ai.openai.api.OpenAiApi.Usage) usage.getNativeUsage();
// Work with native usage data
}